Prochlorococcus and Synechococcus have Evolved Different Adaptive Mechanisms to Cope with Light and UV Stress

نویسندگان

  • Daniella Mella-Flores
  • Christophe Six
  • Morgane Ratin
  • Frédéric Partensky
  • Christophe Boutte
  • Gildas Le Corguillé
  • Dominique Marie
  • Nicolas Blot
  • Priscillia Gourvil
  • Christian Kolowrat
  • Laurence Garczarek
چکیده

Prochlorococcus and Synechococcus, which numerically dominate vast oceanic areas, are the two most abundant oxygenic phototrophs on Earth. Although they require solar energy for photosynthesis, excess light and associated high UV radiations can induce high levels of oxidative stress that may have deleterious effects on their growth and productivity. Here, we compared the photophysiologies of the model strains Prochlorococcus marinus PCC 9511 and Synechococcus sp. WH7803 grown under a bell-shaped light/dark cycle of high visible light supplemented or not with UV. Prochlorococcus exhibited a higher sensitivity to photoinactivation than Synechococcus under both conditions, as shown by a larger drop of photosystem II (PSII) quantum yield at noon and different diel patterns of the D1 protein pool. In the presence of UV, the PSII repair rate was significantly depressed at noon in Prochlorococcus compared to Synechococcus. Additionally, Prochlorococcus was more sensitive than Synechococcus to oxidative stress, as shown by the different degrees of PSII photoinactivation after addition of hydrogen peroxide. A transcriptional analysis also revealed dramatic discrepancies between the two organisms in the diel expression patterns of several genes involved notably in the biosynthesis and/or repair of photosystems, light-harvesting complexes, CO(2) fixation as well as protection mechanisms against light, UV, and oxidative stress, which likely translate profound differences in their light-controlled regulation. Altogether our results suggest that while Synechococcus has developed efficient ways to cope with light and UV stress, Prochlorococcus cells seemingly survive stressful hours of the day by launching a minimal set of protection mechanisms and by temporarily bringing down several key metabolic processes. This study provides unprecedented insights into understanding the distinct depth distributions and dynamics of these two picocyanobacteria in the field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies.

Prochlorococcus and Synechococcus are abundant unicellular cyanobacteria and major participants in global carbon cycles. Although they are closely related and often coexist in the same ocean habitat, they possess very different photosynthetic light-harvesting antennas. Whereas Synechococcus and the majority of cyanobacteria use phycobilisomes, Prochlorococcus has evolved to use a chlorophyll a(...

متن کامل

Divergent light-harvesting complexes

‡Current address: University of Washington, School of Oceanography, Box 357940, Seattle, WA 98195-7940, USA. †Co first authors. Approximately one-half of the total primary production on Earth occurs in the oceans [1]. Although hundreds of species contribute to oceanic productivity, members of two cyanobacterial genera – Prochlorococcus [2,3] and Synechococcus [4] – are responsible for a signifi...

متن کامل

Toxin-Antitoxin Systems in Estuarine Synechococcus Strain CB0101 and Their Transcriptomic Responses to Environmental Stressors

Bacterial toxin-antitoxin (TA) systems are genetic elements composed of a toxin gene and its cognate antitoxin, with the ability to regulate growth. TA systems have not previously been reported in marine Synechococcus or Prochlorococcus. Here we report the finding of seven TA system pairs (Type II) in the estuarine Synechococcus CB0101, and their responses of these TA genes to under different s...

متن کامل

Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity.

Prochlorococcus is a major photosynthetic prokaryote in nutrient-limited, open ocean environments and an important participant in the global carbon cycle. This phototroph is distinct from other members of the cyanobacterial lineage to which it belongs because it utilizes a chlorophyll a2/b(2) light-harvesting complex as its major antenna, instead of phycobilisomes. Recently, genes encoding the ...

متن کامل

Intertwined Evolutionary Histories of Marine Synechococcus and Prochlorococcus marinus

Prochlorococcus is a genus of marine cyanobacteria characterized by small cell and genome size, an evolutionary trend toward low GC content, the possession of chlorophyll b, and the absence of phycobilisomes. Whereas many shared derived characters define Prochlorococcus as a clade, many genome-based analyses recover them as paraphyletic, with some low-light adapted Prochlorococcus spp. grouping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012